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SAMPLED-DATATECHNIQUESAPPLIEDTOA DIGITAL

CONTROLLERFORANALTITUDEAUTOPILOT

By Stanley F. Schmidt and Eleanor V. Harper

SUMMARY

Sampled-data theory, using the Z transformation, is applied to the
design of a digital controller for an aircraft-altitude autopilot. Par-
ticular attention is focused on the sensitivity of the design to parameter
variations and the abruptness of the response, that is_ the normal accel-
eration required to carry out a transient maneuver. Consideration of
these two characteristics of the system has shownthat the finite settling
time design method produces an unacceptable system, primarily because of
the high sensitivity of the response to parameter variations, although
abruptness can be controlled by increasing the sampling period. Also
demonstrated is the importance of having well-damped poles or zeros if
cancellation is attempted in the design methods.

A different method of smoothing the response and obtaining a design
which is not excessively sensitive is proposed, and examples are carried
through to demonstrate the validity of the procedure. This method is
based on design concepts of continuous systems, and it is shownthat if
no pole-zero cancellations are allowed in the design, one can obtain a
response which is not too abrupt, is relatively insensitive to parameter
variations_ and is not sensitive to practical limits on control-surface
rate. This particular design also has the simplest possible pulse
transfer function for the digital controller.

Simulation techniques and root loci are used for the verification of
the design philosophy.

INTRODUCTION

The design of sampled-data systems, the theory of which is applicable
to feedback control systems utilizing a digital computer, is a relatively
new field but is receiving considerable attention in those applications
in which the basic information is received as pulses or in the form of
numbers. This maybe due to greater accuracy requirements, since digital
transducers can be mademore accurate than analog transducers_ or to the
fact that the actual measurementdevice, for example a radar, yields a
sampled signal. Another application in which digital computers in real
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time control systems are receiving attention is where a large amount of
flexibility of changing computation procedures is required (e.g., an
interceptor aircraft having a fire control system, an automatic landing
system, altitude and direction hold systems, etc.). In these applica-
tions the digital computer offers a possibility of weight reduction and
improved reliability, both highly desirable features.

1

The sampled-data theory has progressel to the point where it is

possible to design a digital-controller pulse transfer function so as to

obtain an over-all system pulse transfer f_uction which will meet certain

specifications, such as being stable and p_fsically realizable, having a

minimum settling time in response to a given input, having a ripple-free

response after a short transient, etc. A survey of the literature, how-

ever, has indicated a scarcity of informati>n on the sensitivity of a

system to parameter variations or how to control, in the design process,

the abruptness of the response. References 2 and 3 touch upon the sub-

ject of abruptness and show one method of smoothing the response by

proper design of the characteristic equatioi_. Another shortcoming in the

literature has been that the examples are restricted to plants of third
order or less.

It is the purpose of this paper to sh_, first, that considerations

of the sensitivity of the response to parameter variations and abruptness

of the response to transient inputs preclud_ the use of finite settling

time design (i.e., one in which the error i_ reduced to zero in a speci-

fied number of sampling instants); second, _o show that continuous system

design concepts can be used to select the dominant poles of the closed-

loop pulse transfer function so as to achieve a desired transient

response; and third_ to present results of a study of the design for a

fourth-order plant.

In order to obtain some indication of _he practical limitations

imposed on the response of the system, the 'plant" is taken to be an

aircraft and the system to be one that controls the aircraft's altitude.

The abruptness and sensitivity of the respo_Ise to a transient maneuver

will be judged in this application by the _gnitude of the maximum load

factor and the change in the stability of t_e system with parameter

variations.

In order to obtain a system response t_lat will be acceptable to a

variety of inputs and flight conditions the theory of design used here

is different from that normally employed to "soften" the response.

1The theory and design methods contained in this report were derived

to a large extent from a course taught at S-_anford University by G. F.

Franklin. Reference i by J. R. Ragazzini _id G. F. Franklin contains an

extensive bibliography of the available literature on sampled-data theory.
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NOTATION

a Z
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Z_, Z_

Z [f(t)l

normal acceleration, ft/sec 2

mean aerodynamic chord, ft

pitching-moment coefficient,

vertical-force coefficient,

2. 7183

altitude, ft

change in altitude, ft

moment of inertia, ib-ft/sec 2

4-:7

mass, ib sec2/ft

i pV2S_ Cm _Cm 2__
2 Iy _' _q_/2V

i PV2S_ _ 8Cm _- 8Cm_

2 iy \_v 2v'-ggJ

pitching velocity, radians/sec

Laplace operator

wing area, ft 2

sampling period, sec

velocity, ft/sec

e sT : Z transform operator

i _vs{._Cz_Cz3
2 m <'Z' _J

Z transform of f(t)

angle of attack, radians

pitching moment

(1/2 bv2s_

vertical force

(1/2) pV2S_-
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9

P

w n

F(z-_l

flight path angle, radians

control-surface deflection, radiams

damping ratio

pitch angle, radians

3.14159

density, ib sec2/ft 4

natural frequency, radians/sec

n

finite polynomial in z of forn aiz

i=o

Superscript

-i

sa_apled version of a function of time

FUNDAMENTAL CONCE FI_

The theory of sampled-data systems is :overed in considerable detail

in references i and 4. However, it is desirable to include herein certain

of the fundamental concepts of sampled-data systems so that the applica-

tion of the theory to the example chosen wi_.l be understandable by those

familiar with the design and analysis of li:lear feedback systems.

Elements of a Sampled-Da:a System

The basic elements of a simple sampled-data system are shown in

sketch (a). Here the continuous error sign_l e(t) is measured at

regular intervals, T seconds apart, by the sampler. The output of the

_(,) _ _ e(,) o/° e*(t) Con,_oll_ Co.,rolledI c(,)
-- Sampler system

T

Sketch (a)



sampler consists of a train of pulses whose amplitude (or area) represents
the value of the input at each sampling instant. This pulse train e*(t)
is modified by the controller to provide stability and other characteris-
tics to the complete system as well as smoothing of the sampled data.
The controlled-system characteristics are presumedknownand in this
report will be represented by a transfer function relating altitude to
controller output.

Analytical Description of the Sampler

The output of the sampler shownin sketch (a) can be written as

e(t)i(t) = e*(t)

where i(t) is a train of unit impulses occurring every T seconds.
This operation is illustrated in sketch (b)

(i)

e(t) i(t) e_(t)

rlllflll,--
f-i- I.-

N

Sketch (b)

,Tlllf
I

Now using an infinite series expression for i(t) the sampler output
becomes

o_

e*(t) = e(t)_,Uo(t - nT)

n--o

(2)

where u o is the unit impulse function. Since the unit impulse function

is zero except at time nT, this equation can be rewritten as

co

e*(t) = fe(nT)uo(t - nT)

n=o

(3)

where e(nT) is the value of the input when t = nT. The Laplace trans-

form of this equation is
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E*(s) : Ze(nT)e-n_s

n=o

(4)

A second method of specifying E*(s) is by expanding

.Uo(t - nT) : i(±)

--OO

in a Fourier series which gives

1_ j_,mt/Ti(t) = _ e (7)

since the Fourier series coefficients are corstant and all equal to I/T;

therefore,

1 _, eJ2_nJi/Te*(t) : e(t)

--OO

(6)

By theorem (see ref. 9)

then,
J-OO

<s2j>_i*(s)=¥ _, _-
--(X:I

(7)

(8)

This formula shows that E*(s) is a periodic function repeating itself

2_/T radians per second as illustratec[ in sketch (c).every

(jw) l

0

II _(Jw) :

-2_r 27r

T T

t,d

Sketch (c)
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The Z Transform

The Z transform of a function of time (defined only at sampling

instants) can be found by substituting z = esT in equation (4). Thus

= E(z) = > e(nT)z -n (9)Z[e*(t)]

n=o

The infinite summation can be found in closed form for all applica-

tions considered here. To find the closed form one can either sum the

series (9) or use the complex convolution integral

i + dX
E(z) : E*(s) - 2_j -T(s -h)

z = esT - joo 1 - e
I (Io)
z : esT

Tables have been prepared for a large number of the useful Z transforms

(refs. i and 4); thus, in general it is not necessary to use complex

integration. The Z transform can relate the sampled input of a system

to the sampled output. When it is used in this manner it is commonly
referred to as a "pulse" transfer function.

To obtain e(nT) from a closed Z transform there are three courses

that can be taken

i. Refer to tables (refs. i and 4).

2. Expand E(z) in powers of z -I by long division.

3 Use the formula e(nT) i _E(z)zn-ldz where
• - 2_j

the unit circle. dr
F is

The initial and final value of a pulse sequence which results from

inversion of a pulse transfer function can be determined readily from

the following theorems:

Initial value theorem f(O) = lim F(z) (i_l)
Z_

Final value theorem f(_) : lim(l-z-i)F(z) (12)
Z_l

A further important point about the Z transform is the stability of a
given pulse transfer function. Since z = e sT it can be seen that the

left half of the s plane maps into a unit circle in the z plane.

Thus, if all poles of a pulse transfer function are located inside this

unit circle the pulse transfer function is stable.
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In general, for a sampled-data system of the type illustrated in

sketch (a), that is a sampling of the error s_gnal, the Z transform can

be used similarly to the Laplace transform f_r a continuous system.

Root-locus methods of analysis can be used in the z plane; however,

they are difficult to apply since the region of interest is that inside
the unit circle. The drawing of the root loc_s becomes relatively tedious

since asymptotic behavior provides no help in giving a rough idea of the

position of the loci as is the case in the s plane. It should also be

recognized that the Z transfo_n design specifies only what happens at

sampling instants. This is not a serious drawback, however, for in order

to determine system behavior it is always possible to test the designed

system by simulation techniques. Also_ from the transfer function of the

continuous elements of the system_ a relatively accurate idea of the

system behavior between sampling instants can be determined.

Because of the drawbacks of root-locus techniques in the z plane

and for other reasons_ the design of sampled-_ata systems is probably

best carried out by a different method. This method_ which is explained

in the next section, could be applied to continuous system design as well;

however_ to the authors' knowledge, it is no± in widespread use.

Design Criteria For Digital-Co_troller Pulse
Transfer Function

The procedures for the design of the di@ital controller D(z) are

outlined with reference to the simplified block diagram shown in sketch (d).

In this sketch D(z) represents the pulse trsnsfer function of the digital

controller. The zero-order hold circuit constructs a continuous signal

i R K(z)

.J
,.o,,- o.- ccz_)

_ m .-I r, , ,z,3 I.. _ G(z)

oraer j

Sketch (d)



from a sampledsignal as shownin sketch (e). The transfer function for
this operation is (i - e-ST)/s. The block labeled "plant" represents the
fixed elements of the system.

Holdcircuit
input

Hold circuit
output

Time,t

Sketch(e)

The following equations are developed from sketch (d):

0(z)
K(_) -

R(z)

1 -K(z) E(z)
R(z)

K(z) C(z) _ D(z)G(z)
1 --_-F(z)- E(_.)

therefore

(13)

(m4)

(15)

I. Stability

A. K(z) must be of the form

Equation (16) is the fundamental design equation. Certain mathematical

constraints must be put on this equation in order to arrive at a stable

system which has the desired characteristics. These constraints and the

reasons for them are as follows:

K(z) 1
D(_) : 1-K(z)_ (_6)
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.) (17)

where the _'s are undetermined coefficients and z = al,

z = a2, . . are the zeros of G(z) on or outside the unit

circle (on or outside the stable region in the z plane).

The reason for this constraint is obvious from equation (16).

If it is not satisfied D(z) will have a pole where G(z)

has a zero, and consequently _ome of the poles of D(z) will

be outside the stable region (ausing the over-all system to

be unstable since perfect cancellation can never be expected.

B. 1 - K(z) must be of the form

.) (18)

where the y's are undetermined coefficients and z = bl,

z = b2, are the poles of G(z) on or outside the unit

circle in the z plane. The reason for this constraint is

also obvious from equation (16), for if it were not met,

zeros of D(z) would be imperfectly canceling poles of G(z)

outside the stable region, a J'act which would cause insta-

bility in the over-all system

II. Zero Steady-State Error to an Input of the Form r(t) = tn

III.

The Z transform of tn is of tile form [F(z-i)]/[(l-z-1)n+l].

If zero error to such an input is desired (at sampling instants)

then i - K(z) must be of the form

(i - z-l)n+l[Fl(Z-1)] (19)

where Fi(z -i) is a polynomial in z-1 satisfying other

constraints. This can be seen by applying the final value

theorem (12) to equation (14).

Transient Performance

A. Finite settling time

(i) Minimum

If only I and II are sati:_fied then K(z) will be the

lowest order polynomial in z-i. This results in a

minimum finite settling t:me since reference to equa-

tion (9) shows that e(nT) will be zero (to a unit

pulse input r(t)) after T times the order of K(z)

seconds.

(2) Zero ripple

Zero ripple by definition means that for an input of

form r(t) = tn the output must be of the form tn.
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B.

In other words, the output must follow the input between

sampling instants. With reference to sketch (d) this

can only be accomplished if e1(nT) is zero or a constant

in the steady state, for otherwise the output of the

zero-order hold circuit would be stepping from one value

to another, which would cause ripple.

c(z) _ R(z) K(z)
- a(z) a(z) (20)

For e1(nT ) equal to a constant in the steady state,

equation (20) must be of the form

F(z-I)
-i

l-z

as can be seen from equation (12). Thus, for zero

ripple all the zeros of G(z) must be contained in K(z).

This is not the only requirement. In addition if

F(z -I)
R(z)=

(i - z-l) n+l

then G(z) must have an nth-order pole at z = 1 to

cancel all but one of the poles of R(z). An even

simpler way of assuring that zero ripple is possible is

to count the number of poles of G(s) at s = O. If

r(t) = tn then the number of poles of G(s) at s = 0

must be greater than or equal to n + i.

Smoothing

As is described in reference I it is possible to add a

denominator 2 to K(z) which has been determined by the pre-

ceding results so that K(z) is of the form

K(z) = F(z-I) (21)
(i +Clz-l+ C2 Z-2 + . . . )

The addition of this denominator changes the system such

that finite settling time is no longer obtained. It is

mentioned in reference I that the choices of c's can be

made for

2Note that in reality we are not necessarily increasing the order of

the characteristic equation. What is really done is to change the charac-

teristic equation from one with all roots at z = 0 to one which allows

some of the roots to be at other positions inside the unit circle in the

Z plane.
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(i) Smoothing the transient response so that it is not

as abrupt.

(2) Optimizing the respons_ in the presence of noise.

This report illustrates that if considerations of sensitivity

and abruptness of response are important_ then one should

always design the system so that K(z) has a denominator.

It is shown in a later section of this report that a choice

of c's in equation (21) which will satisfy abruptness of

response requirements can be determined from continuous

system design theorems.

DESCRIPTION OF PROBLEM

The problem chosen as an illustrative example is an altitude command-

type autopilot. In order to reduce the problem to block diagram form it

is necessary to derive the aerodynamic equations and put them into trans-

fer function form. In order to do this certain assumptions must be made

as follows:

(a) The aircraft does not roll.

(b) The velocity is a constant.

(c) The altitude is approximately constant.

(d) Small angle approximations are valid for e and y.

(e) The aircraft is initially in trim flight.

(f) The aerodynamic coefficients are constant.

With these assumptions the following equations are valid

-q+a = = (22)

Vy = az

= M_+Mqq+M6$ _M_

pitching velocity

normal acceleration

rate of change of altitude

from which the transfer functions given below can be derived:

(23)
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q (% +Maz_)s+ (_z_ -M_Z_)

8 - s2- (z_+_ +_)s + (_hz_-_)
(24)

vi az (-Zs)s2+ (_ +_)Zss - (MsZ_-_Zs)
b - _ -v (25)

s_-(z_+_h+_)s + (_z_ -_)

As a representative aircraft an interceptor at a cruising velocity of

695 feet per second, 30,000 feet altitude was chosen. The aerodynamic

constants are tabulated below

= -o. 489
= -6. 737

Z6 = -0.1205

M s = -16.04

M_ = -0.1630

Z_ = -0.6716

V = +695 ft/sec

With these values the transfer functions (24) and (25) become

q -16.02s -9.961

s2 +1.324s + 7.065
(26)

Vy az

6 - 6

83.75s 2 + 54.61s - 6923

s2 + 1.324s + 7.065
(27)

The block diagram of the system is as shown in figure i.

designed for comparative purposes are as follows:

Case I Kq = 0

Case II Kq : -0.18

These values of Kq result in the transfer functions between

output of the hold circuit, and az of

Two cases

M, the

Case I --5= 1.0 az - az
M "" M 5

Case II
az 83.75s 2 + 54.61s - 6923

M - s2 + 4.206s + 8.858

(28)
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APPLICATION OF DESIGN CRITERIA TO ALTITUDE AUTOPILOT

Theoretically, the only constraint which must be imposed upon the

design of a digital controller is that the system be stable. As shown

in the previous section a minimum finite settling time system would

result from this constraint alone. Since it is desirable to have zero

error continuously one must also impose the zero ripple constraint.

Practical considerations, however, such as abruptness of the response to

step inputs, smoothing of noisy inputs, and sensitivity to parameter

changes may require that additional constraints on the design be imposed.

It is desirable, therefore, to investigate the different designs which

can be made and study their characteristics by means of simulation.

Choice of Sampling Period

There seems to be no theoretical method of choosing the optimum

sampling period for a closed-loop system. I_ the input command were

band limited to a frequency _, then the samIling theorem states that if

i/2_ = T, all information can be reconstructed from the samples. This

theorem does not apply here since the system is completely satisfactory

only if zero error to all possible inputs is maintained. This dilemma
is not studied here. The choice of sampling period is based on knowledge

of the control of an aircraft by a human pilot. Previous studies indi-

cated that a period of 0.25 second is about the longest that should be

chosen. For exemplary purposes a period of J second is also chosen in

order that effects of sampling period in the design can be demonstrated.

Practical considerations probably would forc_ the choice of period to be

the shorter of the two, principally because a i second sampling period

would cause a rough flight for the pilot. T_ 0.25 period or 4 cps

sampling rate appears to be high enough that the jerkiness of the hold

circuit output during transient inputs would be quite well filtered by

the control-surface servo and aerodynamic lags.

Finite Settling Time Design Wi_,h Zero Ripple

Finite settling time design, Case I, Kq = 0, T = 0.25 second.- The

steps involved in the design are shown for this example for the benefit

of those unfamiliar with digital-controller c.esign methods. The first

step is the determination of G(z)

(29)

Transfer function (29) is expanded in parti_, fractions
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G(s) = (1-e-ST)< • 979.8sS+ 191.3s_ + 114.7s
114.7s + 343 .i

s2 +1.324s +7.065_ (30)

The individual terms are converted to Z transforms, using the tables

of reference i or 4, and then recombined to give

1.360z 3 - 12.67z 2 -ii.96z + 1.074

G(z) : (z -i)2(z2- 1.356z +0.7182) (31)

1.360z -I - 12.67 z-2 -ii.96z-3+ 1.074z -4

(i -z-X)2(l - 1.356z-i+ O.T182z -2)
(32)

The next steps are to determine K(z) and i - K(z) such that stability

and zero ripple constraints are satisfied.

K(z) = (Numerator of G(z) in powers of z-1)(_o+6zz -I)

= (l'360z-Z-12"67z-2-11-96z-3+l.074z-4)(_o+Gxz-X) (33)

1-K(z) : [Poles of G(z) on or outside unit], lcircle in powers of z -I ]_7o +71 z- +72 z-2 +73 z-3)

= (I - 2z -z + z-2)(yo +TlZ-Z+ 72 z-2 +73z -s) (34)

The coefficients of equal powers of z-I in the expression i - K(z) as

obtained from equations (33) and (34) are equated. Enough undetermined

coefficients must be provided to give a sufficient number of simultaneous

equations in y's and _'s to allow their solution. For this example, the

solution of the simultaneous equations gives

Yo = 1.000

Yl = 2.215

Y2 = 1.276

Y3 = -0.1211

_o : -0.1579

_z = 0.1128

Then

K(z) = (1.360z -I - 12.67z-2 _ ii. 96z-3 + i. 074z-4 )(-0.1579 + 0.1128z -z)

(35)

l-K(z) = (l-z-Z)2(l+2.215z-Z+l.276z-2-O.1211z -3) (36)

The last step is the substitution of equations (35), (36), and (32) into
equation (16) to give
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D (z) = -0.1579 (i - 0. 7146z- l) (i - i. 356z- i + 0. 7182z-2 ) (37)
i+ 2.215z-I+ 1.276z -2 - O.1211z -3

The design at this stage is complete. This system as designed,

however, may be unsatisfactory because of sensitivity to parameter

changes and abruptness of the response. An analog computer simulation

is one of the best ways of analyzing such s system. This method is used

here. Appendix A shows one procedure by which a digital computer can be

simulated on an analog computer. This method is derived in reference 6.

Derived, also in appendix A, is the detailed computer diagram for this

example. Appendix B contains a description of the electronic sample-

hold circuit used for simulation purposes _n this investigation.

The results of the simulation studies are summarized in figure 2.

There are two important things to note in _igure 2. The first is that

the system does not have a finite settling time. This is obvious from

figures 2(a) and (b) in which it can be seen that both the step response

and the ramp response contain an oscillato_y mode which damps exponen-

tially. This appears to be due to the extleme sensitivity of the system

which makes it impossible to simulate the system even with highly accu-

rate analog computing equipment. The secord item of importance to note

is that for a step input of i0 feet, figure 2(a), a peak acceleration of

approximately 31 g's is required during the transient maneuver. This

large peak in acceleration is a result of _he linear analysis. In an

actual aircraft, control-surface position snd rate limits as well as

aerodynamic nonlinearities would prevent such an excessive peak. One

cannot state what the exact performance of the finite settling time

design would be with the actual nonlinearities; however, the introduction

of a high-performance servo in the simulation resulted in an instability

of the system which indicates that in all Irobability nonlinearities

would also cause system instability.

Figure 2(c) illustrates the effects o_ a lO-percent increase and

decrease in system gain. These results pl_s the fact that the simulated

system does not have finite settling time _ndicate that the design is

quite sensitive to parameter changes.

Figure 3 is a root-locus plot showing effects of gain on theoretical

pole locations of a closed-loop system. T_e system is noted to be very

sensitive to gain changes around the designed gain which places the closed-

loop poles at the origin.

Figures 4(a) and (b) are root-locus plots showing effects of altitude

on the closed-loop pole-zero locations. Ncte that a drop in altitude

changes all the aerodynamic coefficients because of the consequent change

in air density. Again it is seen that the pole locations which are at

the origin for 30,000 feet move a considersble distance (two almost

becoming unstable) for 27,000 feet.
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In summary, then, for two reasons - (a) relatively high sensitivity

to parameter changes and (b) response which is much too abrupt - the

finite settling design method does not result in a satisfactory closed-

loop performance for this particular case.

Finite settling time design, Case II, Kq = -0.18, T = 0.25 second.-

The results of the previous system studied showed that the theoretical

finite settling time design could not be simulated. Figures 3 and 4

illustrate the relatively high sensitivity of the system; however, this

is not necessarily the only reason that the simulated system did not

agree with theory. Another reason might be related to the fact that

zeros of D(z) theoretically must cancel poles of G(z). Because the two

canceled poles have a relatively low damping ratio (_ = 0.258), it is

possible that imperfect cancellation, in addition to the high sensitivity

previously noted, could be an important factor in the disagreement. The

artificial damping added in Case II increases the damping ratio of the

canceled poles to 0.707, thus making it possible to study the effect of

damping on the ability to simulate a finite settling time design.

For this example, the use of the same procedures as those of the

previous section gives the following pulse transfer functions:

l.O19z s - lO.21z 2 - 7.527z + 0.7295
a(z) = (38)

(z -l)2(z 2 - 1.022z + 0.3494)

K(z) : (l.019z -1-10.21z -2-7.527 z-3+0.7295z-4)(-0.2154+0.1528z -I)

(39)

l-K(z) : (l-z-1)2(l+2.220z -I+I.085z -2-0.II15z -s) (40)

D(z) = -0.2154(l-0.7096z-l)(l-l.022Z-l+0.3494z -2) (41)
i + 2.220Z-I+ 1.085z -2 - 0.1115z -s

The results of the simulated response for this example are summarized

in figure 5. It can be noted from both figures 5(a) and 5(b) that the

simulated system has a finite settling time, a fact which agrees with the

theory. Figure 5(a) shows this system also to be very abrupt, as would

be expected, requiring about 33 g's peak for a 10-foot step input. Fig-

ure 5(c) illustrates that the response of this system is also quite

sensitive to gain variations.

From the results of the simulated systems, Case I and Case II, it

can be concluded that if the design method being utilized requires pole-

zero cancellation one should be certain the canceled poles of G(s) are

in a well-damped region of the s plane.
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Finite settlin_ time desi_n_ T = 1.O _econd.- The two cases studied

previously are unacceptable for applicatio_ to an aircraft due to both

sensitivity to parameter variations and abI_ptness of response. One of

the questions it is necessary to answer for a sampled-data system is:

Do these two parameters vary together or can they be independently con-

trolled? It should be obvious that one way of controlling abruptness of

response is by increasing the sampling period. Thus, one can maintain

a finite settling time design and reduce tke abruptness of response, but

the important question is will the sensitivity to parameter changes also

be reduced?

An alternative procedure which could be utilized is to keep the

sampling period the same but specify, as another constraint, the time

response at sampling instants to be smooth and as slow as desired for as

many sampling instants as is necessary. If one maintains a finite

settling time design in this manner the result will be that the order of

the system is increased by one for each sampling instant specified; thus,

the digital computer will become more and more complicated. This second

method will not be illustrated here because of its additional complexity.

To determine the effect of sampling period on abruptness and

sensitivity, the two cases are designed for finite settling time period

T = 1 second. For Case I, Kq = 0, the puls_ transfer functions are:

G(z) = -162"8zS -ll04z2 - 79_.9z - 72.11 (42)
(z -l)2(z 2 + 0.8704: + 0.2662)

K(z ) : (-162.8z- l _ ll04z-a _ 7_4.9z-3 _ 72. ii 7-4 )(-0. 001601 + O. 001123z- l)

(43)

1-K(z) = (1-2z -1+z-2)(l+l.739z-1, 0.8947z -2+0.08106z -s) (44)

-0.001601(1 - 0.7016z-i)(1 +08704z -I +0.2662z -2)

D(z) = i +1.739z -I + 0.8947 z-:_ +0.08106z -_ (45)

This system was simulated by the method of appendix A and typical

transient responses are summarized in figure 6. Again it may be noted

that in the simulation, finite settling time was not achieved. The

abruptness of the response has been eonside:_ably reduced, that is, peak

acceleration is about 0.87 g's for a lO-foo-_ step. Figure 6(c) shows

the response to be somewhat sensitive to gain changes; however, the best

indication of a sensitivity problem is the inability to simulate a theo-

retics]_ly finite settling time design. The reason for this could be the

attempt to cancel poles of G(z) which are _n relatively low damped

regions as was the case for T = 0.25 seconc_. This particular system is

too oscillatory to be useful so we shall now consider Case II where

canceled poles are more heavily damped. In this case the pulse
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transfer functions are:

G(z) : -ii0"3z-i -572"1z-2 -200"6z-S -7"468z-4
(i - z-i)2(i + 0.1247 z-1 +0.01491z -2) (46)

K(z) = (-llO.3z -I -572.1z -2 - 200.6z -s - 7.468z-4)(-0.003501 + 0.002378z-i)

(47)

l-K(z) = (l-z-1)e(l+l.614z -I+0.4866z -2+0.01780z-3) (48)

D(z) = -0.003501(i - 0.6793z-I)(1 + 0.1247z-i+ 0.01491z -2) (49)
i + 1.614z -I + 0.4866z -2 + 0.01780z -s

The results of this simulation are summarized in figure 7. Fig-
ures 7(a) and (b) show that finite settling time was achieved for this

case, and illustrates again that if poles of G(z) are to be canceled

by zeros of D(z) then these poles must be heavily damped. Figure 7(a)

also illustrates, as was anticipated, that the abruptness of response

has been reduced considerably being about 1.30 g's for a 10-foot step
input. Figure 7(c) also gives conclusive evidence that the finite

settling time design is quite sensitive to gain variations even though

the abruptness of response has been reduced. Further evidence of this

sensitivity problem is illustrated in figure 8 which is a root-locus plot

of Case II for open-loop gain variations.

The general summary of the results would tend to confirm the fact

that a finite settling time design procedure will always result in a

sensitive system and, thus, if it is to be used for any practical appli-

cations, the plant must have a transfer function free of nonlinearities

and with coefficients that are nonvariant. An intuitive reason for this

is illustrated by the root-locus plot of figure 8. We see that a finite

settling time design requires all poles of the closed-loop system, with

the exception of those being canceled, to be at the origin in the z

plane. It can be seen the origin is a position of extreme sensitivity

since open-loop gain changes of ±5 percent cause the poles to move a

considerable distance; whereas, an additional change of ±5 percent causes

only the small motion indicated in the figure. The alternative procedure

for reducing the abruptness of the response, previously mentioned, would

place an even greater number of poles at the origin. From the results

shown in figure 8, one would believe that placing more poles at the origin
would increase the sensitivity rather than decrease it.

It must be concluded from these standpoints that some of the poles

of the closed-loop system should be located in other positions than the

origin inside the unit circle of the z plane if we are to obtain satis-

factory performance. The next section illustrates a method for choosing

this location based on continuous-system analogy.
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Considerations Involved in Adding a Denominator to K(z)

The two previous systems studied indicate that it would be desirable
to reduce the sensitivity to parameter variations and smooth the tran-
sient response. It is mentioned in references 2 and 3 that the addition
of a denominator (sometimes referred to as a staleness factor if the
denominator is first order) will smooth the transient response. It will
be shownhere that if the denominator is properly chosen, the sensitivity
to parameter changes is reduced.

There are two possible methods for sel._cting a denominator. The
first is a simple trial and error process w_ich can be very tedious.
The second is to base the sampled-data system response on what might be
reasonable for a continuous system of the s_ne type. By meansof the
latter method, experience gained from similar continuous system designs
can be used to select the proper location of the dominant modesin the
s plane which are knownto give satisfacto_ performance. These modes
or location of poles can then be transferred to the z plane and the
design carried through using the added deno_inator.

Consider the continuous system showni_ the block diagram of fig-
ure 9. The problem is to design the networ_ D(s) so that the over-all
closed-loop response ho/h i will be satisflctory. Figure i0 shows the
pole and zero locations of G(s) for the tw_ cases. It is obvious that
for Case I the complex poles of the aircraft are insufficiently damped.
For this case, D(s) must either (1) have complex zeros to attract the
aircraft poles to a more favorable position or (2) cancel the poles with
zeros and place new poles in a more favorabLe position. The second choice
can never be used for an aircraft since (i) poles and zeros are never
knownvery accurately, (2) their positions _hift with Machnumberand
altitude, and (3) gust inputs would excite the oscillatory modesince it
is not canceled for inputs other than those from the control surface.

Figure !0(b) illustrates that the effect of adding an inner-loop
pitch-rate feedback (fig. i) is to shift th_ poles to a more favorable
position. It should be noted that aircraft automatic control systems
almost always utilize an inner-loop autopilDt of either the combined
normal acceleration and pitch-rate feedback type or the simple pitch-rate
feedback illustrated in this example. The _ddition of normal accelera-
tion as a feedback along with pitch rate allows both the natural frequency
and damping of the aircraft modesto be shifted substantially from the
basic airframe oscillatory mode.

It should be noted that D(s) for the _ontinuous system (Case II)
could be a simple lead network provided the zero, pole, and gain of the
network were chosen so that the complex poles did not shift to an
unfavorable position for the closed-loop performance. Case II is a much
more satisfactory system for the continuous system since the network can
be simpler. It will therefore be used for the following sampled-data
system studies.
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For Case II then, what might be a reasonable selection of the domi-
nant second-order modeof the continuous system? This question cannot
be answered without specifying the task the system is required to perform.
Since this report is dealing principally with the application of sampled-
data design techniques, the only concern will be that the closed-loop
system be relatively insensitive to parameter changes. The dominant mode
of the continuous system will be the closed-loop location of the two poles
which are at s = 0 open loop. Figure ii illustrates a root-locus plot
for one location of the zero and pole of a simple lead network for D(s).
Note that the zeros of G(s) are omitted since their effects on the loci
near the origin are negligible, except that the gain must be negative
for stability. It should be noted that there is not muchchange in the
aircraft oscillatory modeif the gain is varied from 0 to 17. A nominal
operating gain for the system was chosen as 17 which corresponds to the
dominant modeat _ = 0.5 radian per second and _ = 0.707. From the
figure it can be seen that the resultant over-all closed-loop transfer
function can be approximated by

ho 4s + I
h-T= 4s2+ 2.828s+i (50)

This approximation is justified because the other three poles and two
zeros are a relatively long distance from the dominant real zero and
complex-pole locations. It will be assumedhere that this transfer func-
tion, given by equation (50), satisfactorily performs the task for which
the continuous system is being designed.

The dominant mode (denominator) of the sampled-data system closed-
loop, K(z), will thus be chosen at the z plane location of the two
poles of the denominator of the transfer function given by equation (50).
This transforms (for T = 0.25) into

(z -0.9126+0.817i)(z-0.9126- 0.0817i) = z2-1.825z+0.8395 (51)

Figure 12 illustrates the location of poles and zeros of G(z) for Case II,
Kq = -0.18, T = 0.25. It should be noted that the two open-loop poles at
z = i will movealong the dotted lines as the gain is increased to arrive
at the desired location given by equation (51). It should also be noted
that D(z) can be chosen for this case in two different ways. The first
method, cancellation permitted, is to cancel the two complex poles of the
aircraft by zeros and place other poles so that, at the desired gain, they
end up at the origin. The second method, cancellation not permitted, is
to choose a single pole for D(z) and force K(z) to have at least four
poles away from the origin. This second method will actually show that
the digital-controller pulse transfer function D(z) can be simplified by
a properly chosen denominator. Both of these methods will be studied in
the following sections.

Cancellation permitted, Case II, Kq = -0.18, T = 0.25 second.- The

method by which a denominator is added to K(z) is by specifying
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[F1(z-1), meeting other constraints](_ o+_l z-l+ . .)

K(z) = Desired denominator (52)

and

[F2(z-1), meeting other constraints](Yo+ylz-l+...)
i -K(z) = Desired derominator

(53)

By subtracting equation (52) from unity and equating coefficients of like

powers of z-I to those of equation (53) the _'s and 7's are uniquely

determined. For this example all zeros of G(z) appear in K(z) and the

two poles at z = i appear in l-K(z)

G(z) = l'O19z-1-10"21z-2-Z527z-S +0"7295z-4
(i - z-1)a(l - 1.022z -_ + 0.3494z -2)

(54)

K(z) : (l'O19z-1-10"21z-2-7"527z-3+O'7295z-4)(S° +_Iz-l) (55)
(i - 1.825z -l + 0.8395z -2 )

I-K(z) = (l-z-l) 2(yo +y_ z-_ +7____2z-2 +ys z-s)

(i - i. 825z-i + O. 8395z-2 )

The solution for the y's and _'s gives

Yo = 1.000

Yl = 0.18730

72 = 0.07768

Ys = -0.0082657

_o : -0.01223

BI : 0.01133

Use of equation (16) gives

(56)

D(z) = -O.01223(1-0.9264z-1)(1-1.O22z -I+0.3494z -a) (57)
i + 0.1873z -I + 0.07767z -2 - 0.008266z -s

The closed-loop sampled-data system was simulated by the same method as

that of previous studies. The results of the simulation are summarized

in figure 13. As can be noted in figure 13(a), a lO-foot step now calls

for a little over a i g maneuver. The resronse is much slower than for

that of the finite settling time design. The abruptness of the control-

surface motion at the beginning of the transient causes this peak in

normal acceleration and can be traced in part to the design method of

canceling the poles of the aircraft. Figure 13(c) illustrates that the

system response is not very sensitive to gain variations.
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The effects of adding a simulated control-surface servo of transfer

function

5 1
M

M i + 0.02s
(58)

is shown in figure 13(d) for three values of control-surface rate limit-

ing, 6ma x. The inclusion of a linear servo alone gave identical response

to figure 13(a) so that the large overshoots are directly traceable to

effects of control-surface limiting. It is interesting to note that the

overshoot is as high as 500 percent for 6max = 20 ° per second. The

unusual fact that the overshoot is higher for 6ma x = 20 ° per second than

for 5max = I0 ° per second is due to the time relationship between the

actual control-surface motion and the command input during the initial

part of the transient. The reason for the overshoot is traceable to the

design method of canceling poles with zeros of D(z). This might be

expected since any nonlinearities such as saturation in the control sur-

face servo velocity make cancellation impossible for a transient input.

Cancellation permitted, Case II, Kq = -0.18, T = 1.0 second.- The

application of the method previously described for this example gives

G(z) = -l10"3z-1-572"iz-e-200"6z-S-7"468z-4
(i - z-1)2(l +0.1247z-I+ 0.01491z -2) (59)

K(z) = (-ll0"3z-i - 572"iz-2 - 200"6z-S - 7"468z-4)(-0"0009842 +0"0007864z-i)
i -1.320z -i + 0.4966z -a

(60)

(i - z-1)2(l + 0.5710z -I + 0.1622z -2 + 0.00587z -3 )

l-K(z) = i-1.320z -I+0.4966z -2 (61)

-0.0009842(1 - 0.7990z-i)(i +0.1247z -I +0.01491z -2 )
D(z): (6e)

i + 0.5710z -I + 0.1622z -e + 0.00587z -s

Simulation of this system by the method described in appendix A gave the

results which are summarized in figure 14. Of particular note in compar-

ing figures 13(a) and 14(a) is that increasing the sampling period does

not particularly increase the response time even though there is a con-

siderable reduction in both control-surface deflection and maximum normal

acceleration. Figure 14(c) illustrates that the response is not particu-

larly sensitive to parameter changes. The effect of 5 limiting on this

system was studied; however, for a lO-foot step, the called for control-

surface motion is so small that control-surface rate limiting produced

no noticeable effect.
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Cancellation not permitted, Case II, Kq = -0.18, T = 0.25 second.-

As was previously mentioned the digital-controller pulse transfer func-

tion D(z) can be simplified by choosing a d_.fferent characteristic

equation. It may be noted in figure 12 that only a single zero and

single pole of D(z), if their location is properly chosen, will result

in a stable design. One of the questions, then, is how to locate the

pole and zero. Root-locus methods were tried; however, for a sampled-

data system which has as many poles and zerol_ as this case the root-locus

method is very tedious.

An alternative method was used as follows:

[F_(z-_)](_o+ _z-_ +. .)

K(z) : (Desireddominantmode)(l+c_z-i+c2 z-m+. .) (63)

[F2(z-_)](7o+ 7_ -_+ • • •)

l-K(z) = (Desireddominantmode)(l+Clz-l+c2z-2+. .) (64)

where Fl(z -1) contains all the zeros of G(_) and F2(z -I) contains all

the poles of G(z). For this example, Case il, Kq = -0.18, T = 0.25

K(z) = (l'O19z-1-10"21z-2-7"527z-S+("7295z-4)(_°+Siz-i)

(i - 1.825z -i +o. SS95z-2)(l + ciz-l+ c2z -2) (65)

l-K(z) : (i- Z-i)e(l-l.022z-l+0._494Z-2)(yO+Yl z-i)

(i - 1.82_Z -i + 0.8395Z-2](I + ClZ-i + C2Z-2) (66)

Solution of simultaneous equations for _'s, y's, and c's gives

Yo = 1.000

y_ = -0.005402

ci = -1.205

c2 = 0.4018

By use of equation (16) then

D(z) = -0.002763(i-0.9365z -I)

i - 0.005402z -1
(67)

A root-locus plot for this design is illustrated in figure 15. It

may be noted that the closed-loop complex poles (due to the aerodynamics)

move to a somewhat more highly damped position in the z plane. Their

motion is not large, however, and it would be reasonable to assume that

the transient performance will be relatively insensitive to position

variations. This conclusion is demonstrated in the simulated responses
summarized in figure 16.
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Figure 16(d) illustrates that this design which allows no cancella-

tion is insensitive to reasonable values of control-surface limiting.

The differences in output are not even large enough to be recorded. The

only noticeable difference is in the initial control-surface motion which

is completed within one sampling instant and, for the input magnitudes

tested, created no noticeable effect on the output.

Figure 16(e) shows that effects of a change in the aerodynamics

corresponding to a change in altitudes of i0,000 and 20,000 feet are

relatively negligible. For this case the D(z) was left unchanged at

the design value of 30,000 feet altitude. This insensitivity is princi-

pally due to the relatively "low-gain" system. Had a more rapid response
been required the same conclusions might not have been reached.

It is of interest to compare the transient responses of the sampled-
data system derived by this design procedure with those of the continuous

system which was designed to obtain desired dominant mode characteristics.

The root-locus plot of the continuous system used for comparison is shown

in figure ii. Figures 17(a) and (b) show the very close comparison of the

transient responses of the two systems. It should be noted that the start

of the sampled-data system response was shifted so that the two start at

the same point since a delay of 0 to 0.25 second (dependent on the time

of the application of the step) can be experienced by the sampled system.

CONCLUDING REMARKB

It has been demonstrated that the finite settling time design of a
sampled-data system does not produce desirable characteristics when the

method is applied to the design of an altitude autopilot. Two undesirable

features are the very abrupt response and the extreme sensitivity to

parameter changes which are unsatisfactory for aircraft and many other

automatic control systems. Increasing the sampling period generally

reduces the abruptness of response; however, it does not appear to elimi-

nate the sensitivity problem. The sampling period may also be dictated

by other considerations, so that it might not be a variable.

It has been demonstrated that basing the sampled-data system dominant

mode on a continuous system design results in a much more practical system

with respect to the two previous considerations. It has also been shown

that cancellation of aircraft poles by their inverse in the stabilizing

digital network is undesirable. This, of course, is not surprising since

the same conclusion is true in continuous systems.

The most satisfactory design method tested was one in which no

cancellation was allowed and the resulting system has the simplest digital
control function possible.
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In generalj the use of the Z transform for sampled-data system

design appears to be almost as easy to handle as the Laplace transform

for continuous system design. One drawback _hich has been noticed is

that root-locus methods are not easily applicable, principally because

the Z transform of the open-loop system has almost the same number of

zeros as poles. Since stability requires poles to be confined to the

unit circle, a knowledge of the asymptotic behavior for a large z does

not help. In addition a solution for saddle points in the z plane is

almost impossible. This means that one must use the tedious method of

trying points to see if they are on the loci without knowing the approxi-

mate loci. The other drawback is that for the high order system of this

example the sampling period should be chosen initially rather than carried

through as an arbitrary constant to be determined in the final design.

This is simply because of the complexity of _he resultant equations which

occur if it is arbitrary. Since there does lot appear to be a clear cut

means of selecting the sampling period, then one would, in general, have

to duplicate several designs at different periods in order to arrive at

the most suitable one for the particular app].ication.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Jan. 14, 1959
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APPENDIX A

SIMULATION OF THE SAMPLED-DATA SYSTEM

A sampled-data system can be simulated on a conventional analog

computer. The only additional device required is a sample-hold circuit.

There are many ways of constructing this type device utilizing relays or

various electronic circuits. The circuitry used for this study is briefll

described in appendix B and is an all electronic device.

Given a sample-hold circuit, how is D(z) simulated? The method

used is described in reference 6; however, the technique is simple and

will be described here. The following equations can be developed from

figure 18

A(z)B(z)
D(z) = = A(z)B(z) (A1)

Z[(1-e-ST)/s]

A(z)= Z[(l-e-ST)Is] = 1 (A2)
l+ Z {[(1-e-ST)Is]Q(s)} 1 + (1-z-_)Z[Q(s)/s]

from equation (A2)

z = A_) 1i (l- z-l) (A3)

from equation (A4)

P(__] _(z)Z : (i- z-J-)

(A4)

A given D(z) is to be simulated by the circuit of figure 18. The prob-

lem is then to split D(z) into A(z) and B(z) so that Q(s) and P(s)

can be determined from equations (3) and (5), respectively.

D(z) : K[I _-alz-x)(1-aez-2)(" ")]b_z-1)(1b_z-_)( )
(A6)

(AS)
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Now the following conditions insure that Q(s) and P(s) will be physically

realizable stable networks:

(i) All unstable poles of D(z) shall be contained in A(z).

(2) Unstable zeros of D(z) shall be contained in B(z).

(3) All gain, K, shall be contained in B(z).

(4) Stable poles and zeros shall be distributed between A(z)

and B(z) to allow I[i/A(z)]-l}[i/(l-z-1)] and B(z)/(l-z -I)

to be expanded in partial fraction_ of type _/(i- _z-l).

Reference 6 gives a number of examples and _xplains in detail how all

physically realizable D(z)'s may be const_cted from R-C networks•

Since the desire here is to simulate, one m_y allow complex poles. Con-

ditions i, 2, and 4 assure Q(s) and P(s) will be stable networks. These

conditions certainly do not appear to be necessary for simulation pur-

poses, a fact which essentially means that all of D(z) except the gain,

K, can be assigned to A(z). In figure 18, this can be seen to be a

desirable way of handling the simulation si_ce only one sample-hold

circuit is required. For the example, Case I, Kq = O, T = 0.25

• i+_.2-T_ =_ +f:2 _6z-2 - 0.12llz-3 (A7)

B(z) = -0.1579 = Gain Df D(z) (AS)

A(z) = (t-0.7146z-Z)(1-1.356_ -m+0.7182z -2) (Ag)
1 + 2.215z-Z+ 1.276z -_ - 0.1211z -3

i 4.285z -I - 0.4111z -2 + 0.3941z -3- i (i- z-l) - (i- z-l) (i - 0.71+6z -I) (i - 1.356z -1 + 0.7182z -2)

(Alo)

This expression is expanded in partial fraction expansion

Z :z z_Y
30.83 lO.40z +0.8049 (All)

z -0.7146 z_- 1.356z +0.7182 Y

The terms are individually converted to the s plane and recombined to

give

8.655 se + 84.383 + 392.0

Q(s) = (s+l.345)(s2+l.324s+7.065) (AI2)
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It should be noted that Q(s) has a lower order numerator than denomina-

tor. This is absolutely essential because of the circuit used and is a

consequence of imposing condition 3.

A block diagram of the system to be simulated is shown in figure 19.

Figure 20 shows the corresponding analog-computer diagram used for

simulating the system.
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APPENDIXB

AN ELECTRONIC SAMPLE-HOLD CIRCUIT

As was previously mentioned, there are a number of methods of

constructing a sample-hold circuit. The circuitry utilized for this

example is all electronic and for some applications may offer advantages

over circuitry utilizing relays.

Figure 21 is a block diagram of the circuit used. The diode bridge

acts as a gate circuit connecting the output of amplifier i to the input

of integrator 2. When a positive pulse is applied to A and a negative

pulse to B, the diode bridge connects the out,put of amplifier i to the

input of integrator 2. When zero signal is applied to A and B the input

to integrator 2 is open; thus, the diode bridge acts as a sampler of

amplifier i. The function of integrator 2 is to hold the output between

the sampling instants. Integrator 2 acts as _m open-loop integrator dur-

ing the time in which the pulse is off and, al; a consequence, its output

(other than for drift) stays at the value it _ras at the previous sampling

instant. If an initial step of E i is assum,_d the circuit can be seen

to work in the following manner. Initially _lifier i builds up to the

step value; as soon as the pulse arrives at A and B, the integrator

output starts to change value. If the time constant of amplifier i, 2,

3 combination is about i/5 of the sampling t:Lme, then the output Eo

will be equal to +E i at the end of the sampl_ time. Then Eo is held

at Ei by the integrator condenser. Drifts are corrected each sampling

instant. For this problem it was desired tha_ the sample time should not

be longer than i percent of the sample period, T, and that the problem

be run on a real time basis on the analog commter. This means that for

a 4 eps sampling frequency the sample time _ !_/i00 x 0.2D second = 2.5

milliseconds and the time constant of amplifi._r i, 2, 3 combination

should be approximately 0.5 millisecond.

As can be seen from the above number, relatively fast amplifiers

must be available for use in this sample-hold circuit. This is one

difficulty which would probably, in general, ]m_ke this circuit difficult

to fabricate from conventional analog compute_ amplifiers. For use in

this problem specially designed high-perform_lee chopper-stabilized

amplifiers were available. No particular prg)lems were noticed in the
use of this circuit other than the need for _l occasional adjustment to

compensate for drift in the integrator.
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Figure 2.- Transient responses for a finite settling time design;
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T = 0.25.
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